3.235 \(\int \sec ^4(e+f x) \sqrt{a+b \sec ^2(e+f x)} \, dx\)

Optimal. Leaf size=122 \[ -\frac{(a-3 b) (a+b) \tanh ^{-1}\left (\frac{\sqrt{b} \tan (e+f x)}{\sqrt{a+b \tan ^2(e+f x)+b}}\right )}{8 b^{3/2} f}+\frac{\tan (e+f x) \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}{4 b f}-\frac{(a-3 b) \tan (e+f x) \sqrt{a+b \tan ^2(e+f x)+b}}{8 b f} \]

[Out]

-((a - 3*b)*(a + b)*ArcTanh[(Sqrt[b]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]])/(8*b^(3/2)*f) - ((a - 3*b)
*Tan[e + f*x]*Sqrt[a + b + b*Tan[e + f*x]^2])/(8*b*f) + (Tan[e + f*x]*(a + b + b*Tan[e + f*x]^2)^(3/2))/(4*b*f
)

________________________________________________________________________________________

Rubi [A]  time = 0.106159, antiderivative size = 122, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.2, Rules used = {4146, 388, 195, 217, 206} \[ -\frac{(a-3 b) (a+b) \tanh ^{-1}\left (\frac{\sqrt{b} \tan (e+f x)}{\sqrt{a+b \tan ^2(e+f x)+b}}\right )}{8 b^{3/2} f}+\frac{\tan (e+f x) \left (a+b \tan ^2(e+f x)+b\right )^{3/2}}{4 b f}-\frac{(a-3 b) \tan (e+f x) \sqrt{a+b \tan ^2(e+f x)+b}}{8 b f} \]

Antiderivative was successfully verified.

[In]

Int[Sec[e + f*x]^4*Sqrt[a + b*Sec[e + f*x]^2],x]

[Out]

-((a - 3*b)*(a + b)*ArcTanh[(Sqrt[b]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]])/(8*b^(3/2)*f) - ((a - 3*b)
*Tan[e + f*x]*Sqrt[a + b + b*Tan[e + f*x]^2])/(8*b*f) + (Tan[e + f*x]*(a + b + b*Tan[e + f*x]^2)^(3/2))/(4*b*f
)

Rule 4146

Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_), x_Symbol] :> With[{ff = Fre
eFactors[Tan[e + f*x], x]}, Dist[ff/f, Subst[Int[(1 + ff^2*x^2)^(m/2 - 1)*ExpandToSum[a + b*(1 + ff^2*x^2)^(n/
2), x]^p, x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2] && IntegerQ[n/2]

Rule 388

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[(d*x*(a + b*x^n)^(p + 1))/(b*(n*
(p + 1) + 1)), x] - Dist[(a*d - b*c*(n*(p + 1) + 1))/(b*(n*(p + 1) + 1)), Int[(a + b*x^n)^p, x], x] /; FreeQ[{
a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && NeQ[n*(p + 1) + 1, 0]

Rule 195

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(x*(a + b*x^n)^p)/(n*p + 1), x] + Dist[(a*n*p)/(n*p + 1),
 Int[(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && GtQ[p, 0] && (IntegerQ[2*p] || (EqQ[n, 2
] && IntegerQ[4*p]) || (EqQ[n, 2] && IntegerQ[3*p]) || LtQ[Denominator[p + 1/n], Denominator[p]])

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \sec ^4(e+f x) \sqrt{a+b \sec ^2(e+f x)} \, dx &=\frac{\operatorname{Subst}\left (\int \left (1+x^2\right ) \sqrt{a+b+b x^2} \, dx,x,\tan (e+f x)\right )}{f}\\ &=\frac{\tan (e+f x) \left (a+b+b \tan ^2(e+f x)\right )^{3/2}}{4 b f}-\frac{(a-3 b) \operatorname{Subst}\left (\int \sqrt{a+b+b x^2} \, dx,x,\tan (e+f x)\right )}{4 b f}\\ &=-\frac{(a-3 b) \tan (e+f x) \sqrt{a+b+b \tan ^2(e+f x)}}{8 b f}+\frac{\tan (e+f x) \left (a+b+b \tan ^2(e+f x)\right )^{3/2}}{4 b f}-\frac{((a-3 b) (a+b)) \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+b+b x^2}} \, dx,x,\tan (e+f x)\right )}{8 b f}\\ &=-\frac{(a-3 b) \tan (e+f x) \sqrt{a+b+b \tan ^2(e+f x)}}{8 b f}+\frac{\tan (e+f x) \left (a+b+b \tan ^2(e+f x)\right )^{3/2}}{4 b f}-\frac{((a-3 b) (a+b)) \operatorname{Subst}\left (\int \frac{1}{1-b x^2} \, dx,x,\frac{\tan (e+f x)}{\sqrt{a+b+b \tan ^2(e+f x)}}\right )}{8 b f}\\ &=-\frac{(a-3 b) (a+b) \tanh ^{-1}\left (\frac{\sqrt{b} \tan (e+f x)}{\sqrt{a+b+b \tan ^2(e+f x)}}\right )}{8 b^{3/2} f}-\frac{(a-3 b) \tan (e+f x) \sqrt{a+b+b \tan ^2(e+f x)}}{8 b f}+\frac{\tan (e+f x) \left (a+b+b \tan ^2(e+f x)\right )^{3/2}}{4 b f}\\ \end{align*}

Mathematica [C]  time = 8.25721, size = 390, normalized size = 3.2 \[ -\frac{i e^{i (e+f x)} \cos (e+f x) \sqrt{4 b+a e^{-2 i (e+f x)} \left (1+e^{2 i (e+f x)}\right )^2} \left (\frac{\left (a \left (1+e^{2 i (e+f x)}\right )^2+4 b e^{2 i (e+f x)}\right )^{3/2}}{\left (1+e^{2 i (e+f x)}\right )^3}-\frac{2 \left (a \left (1+e^{2 i (e+f x)}\right )^2+4 b e^{2 i (e+f x)}\right )^{3/2}}{\left (1+e^{2 i (e+f x)}\right )^4}+\frac{1}{2} (3 b-a) \left (\frac{\left (-1+e^{2 i (e+f x)}\right ) \sqrt{a \left (1+e^{2 i (e+f x)}\right )^2+4 b e^{2 i (e+f x)}}}{\left (1+e^{2 i (e+f x)}\right )^2}+\frac{(a+b) \tan ^{-1}\left (\frac{\sqrt{b} \left (-1+e^{2 i (e+f x)}\right )}{\sqrt{a \left (1+e^{2 i (e+f x)}\right )^2+4 b e^{2 i (e+f x)}}}\right )}{\sqrt{b}}\right )\right ) \sqrt{a+b \sec ^2(e+f x)}}{2 \sqrt{2} b f \sqrt{a \left (1+e^{2 i (e+f x)}\right )^2+4 b e^{2 i (e+f x)}} \sqrt{a \cos (2 e+2 f x)+a+2 b}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[e + f*x]^4*Sqrt[a + b*Sec[e + f*x]^2],x]

[Out]

((-I/2)*E^(I*(e + f*x))*Sqrt[4*b + (a*(1 + E^((2*I)*(e + f*x)))^2)/E^((2*I)*(e + f*x))]*((-2*(4*b*E^((2*I)*(e
+ f*x)) + a*(1 + E^((2*I)*(e + f*x)))^2)^(3/2))/(1 + E^((2*I)*(e + f*x)))^4 + (4*b*E^((2*I)*(e + f*x)) + a*(1
+ E^((2*I)*(e + f*x)))^2)^(3/2)/(1 + E^((2*I)*(e + f*x)))^3 + ((-a + 3*b)*(((-1 + E^((2*I)*(e + f*x)))*Sqrt[4*
b*E^((2*I)*(e + f*x)) + a*(1 + E^((2*I)*(e + f*x)))^2])/(1 + E^((2*I)*(e + f*x)))^2 + ((a + b)*ArcTan[(Sqrt[b]
*(-1 + E^((2*I)*(e + f*x))))/Sqrt[4*b*E^((2*I)*(e + f*x)) + a*(1 + E^((2*I)*(e + f*x)))^2]])/Sqrt[b]))/2)*Cos[
e + f*x]*Sqrt[a + b*Sec[e + f*x]^2])/(Sqrt[2]*b*Sqrt[4*b*E^((2*I)*(e + f*x)) + a*(1 + E^((2*I)*(e + f*x)))^2]*
f*Sqrt[a + 2*b + a*Cos[2*e + 2*f*x]])

________________________________________________________________________________________

Maple [C]  time = 0.387, size = 1770, normalized size = 14.5 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(f*x+e)^4*(a+b*sec(f*x+e)^2)^(1/2),x)

[Out]

-1/8/f/b/((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*sin(f*x+e)*((b+a*cos(f*x+e)^2)/cos(f*x+e)^2)^(1/2)*(2*sin(f*x
+e)*cos(f*x+e)^4*2^(1/2)*(1/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e
)))^(1/2)*(-2/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e)))^(1/2)*Elli
pticPi((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),1/(2*I*a^(1/2)*b^(1/2)+a-b)*(a+b),(-
(2*I*a^(1/2)*b^(1/2)-a+b)/(a+b))^(1/2)/((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2))*a^2-4*sin(f*x+e)*cos(f*x+e)^4*
2^(1/2)*(1/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e)))^(1/2)*(-2/(a+
b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e)))^(1/2)*EllipticPi((-1+cos(f*
x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),1/(2*I*a^(1/2)*b^(1/2)+a-b)*(a+b),(-(2*I*a^(1/2)*b^(1
/2)-a+b)/(a+b))^(1/2)/((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2))*a*b-6*sin(f*x+e)*cos(f*x+e)^4*2^(1/2)*(1/(a+b)*
(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e)))^(1/2)*(-2/(a+b)*(I*cos(f*x+e)*
a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e)))^(1/2)*EllipticPi((-1+cos(f*x+e))*((2*I*a^(1/
2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),1/(2*I*a^(1/2)*b^(1/2)+a-b)*(a+b),(-(2*I*a^(1/2)*b^(1/2)-a+b)/(a+b))^(
1/2)/((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2))*b^2-sin(f*x+e)*cos(f*x+e)^4*2^(1/2)*(1/(a+b)*(I*cos(f*x+e)*a^(1/
2)*b^(1/2)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e)))^(1/2)*(-2/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a
^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e)))^(1/2)*EllipticF((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b
))^(1/2)/sin(f*x+e),(-(4*I*a^(3/2)*b^(1/2)-4*I*a^(1/2)*b^(3/2)-a^2+6*a*b-b^2)/(a+b)^2)^(1/2))*a^2+2*sin(f*x+e)
*cos(f*x+e)^4*2^(1/2)*(1/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e)))
^(1/2)*(-2/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e)))^(1/2)*Ellipti
cF((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),(-(4*I*a^(3/2)*b^(1/2)-4*I*a^(1/2)*b^(3/
2)-a^2+6*a*b-b^2)/(a+b)^2)^(1/2))*a*b+3*sin(f*x+e)*cos(f*x+e)^4*2^(1/2)*(1/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)
-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e)))^(1/2)*(-2/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(
1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e)))^(1/2)*EllipticF((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/s
in(f*x+e),(-(4*I*a^(3/2)*b^(1/2)-4*I*a^(1/2)*b^(3/2)-a^2+6*a*b-b^2)/(a+b)^2)^(1/2))*b^2-cos(f*x+e)^5*((2*I*a^(
1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*a^2-3*cos(f*x+e)^5*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*a*b+cos(f*x+e)^4*((2
*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*a^2+3*cos(f*x+e)^4*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*a*b-3*cos(f*x+
e)^3*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*a*b-3*cos(f*x+e)^3*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*b^2+3*
cos(f*x+e)^2*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*a*b+3*cos(f*x+e)^2*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2
)*b^2-2*cos(f*x+e)*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*b^2+2*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*b^2)/
(-1+cos(f*x+e))/(b+a*cos(f*x+e)^2)/cos(f*x+e)^3

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)^4*(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.12055, size = 972, normalized size = 7.97 \begin{align*} \left [-\frac{{\left (a^{2} - 2 \, a b - 3 \, b^{2}\right )} \sqrt{b} \cos \left (f x + e\right )^{3} \log \left (\frac{{\left (a^{2} - 6 \, a b + b^{2}\right )} \cos \left (f x + e\right )^{4} + 8 \,{\left (a b - b^{2}\right )} \cos \left (f x + e\right )^{2} + 4 \,{\left ({\left (a - b\right )} \cos \left (f x + e\right )^{3} + 2 \, b \cos \left (f x + e\right )\right )} \sqrt{b} \sqrt{\frac{a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \sin \left (f x + e\right ) + 8 \, b^{2}}{\cos \left (f x + e\right )^{4}}\right ) - 4 \,{\left ({\left (a b + 3 \, b^{2}\right )} \cos \left (f x + e\right )^{2} + 2 \, b^{2}\right )} \sqrt{\frac{a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \sin \left (f x + e\right )}{32 \, b^{2} f \cos \left (f x + e\right )^{3}}, -\frac{{\left (a^{2} - 2 \, a b - 3 \, b^{2}\right )} \sqrt{-b} \arctan \left (-\frac{{\left ({\left (a - b\right )} \cos \left (f x + e\right )^{3} + 2 \, b \cos \left (f x + e\right )\right )} \sqrt{-b} \sqrt{\frac{a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}}}{2 \,{\left (a b \cos \left (f x + e\right )^{2} + b^{2}\right )} \sin \left (f x + e\right )}\right ) \cos \left (f x + e\right )^{3} - 2 \,{\left ({\left (a b + 3 \, b^{2}\right )} \cos \left (f x + e\right )^{2} + 2 \, b^{2}\right )} \sqrt{\frac{a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \sin \left (f x + e\right )}{16 \, b^{2} f \cos \left (f x + e\right )^{3}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)^4*(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="fricas")

[Out]

[-1/32*((a^2 - 2*a*b - 3*b^2)*sqrt(b)*cos(f*x + e)^3*log(((a^2 - 6*a*b + b^2)*cos(f*x + e)^4 + 8*(a*b - b^2)*c
os(f*x + e)^2 + 4*((a - b)*cos(f*x + e)^3 + 2*b*cos(f*x + e))*sqrt(b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)
^2)*sin(f*x + e) + 8*b^2)/cos(f*x + e)^4) - 4*((a*b + 3*b^2)*cos(f*x + e)^2 + 2*b^2)*sqrt((a*cos(f*x + e)^2 +
b)/cos(f*x + e)^2)*sin(f*x + e))/(b^2*f*cos(f*x + e)^3), -1/16*((a^2 - 2*a*b - 3*b^2)*sqrt(-b)*arctan(-1/2*((a
 - b)*cos(f*x + e)^3 + 2*b*cos(f*x + e))*sqrt(-b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/((a*b*cos(f*x +
e)^2 + b^2)*sin(f*x + e)))*cos(f*x + e)^3 - 2*((a*b + 3*b^2)*cos(f*x + e)^2 + 2*b^2)*sqrt((a*cos(f*x + e)^2 +
b)/cos(f*x + e)^2)*sin(f*x + e))/(b^2*f*cos(f*x + e)^3)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{a + b \sec ^{2}{\left (e + f x \right )}} \sec ^{4}{\left (e + f x \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)**4*(a+b*sec(f*x+e)**2)**(1/2),x)

[Out]

Integral(sqrt(a + b*sec(e + f*x)**2)*sec(e + f*x)**4, x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{b \sec \left (f x + e\right )^{2} + a} \sec \left (f x + e\right )^{4}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)^4*(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(b*sec(f*x + e)^2 + a)*sec(f*x + e)^4, x)